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ABSTRACT

Flexural deflections of several plates and beams under
an unknown transverse, concentrated, time dependent force
are solved for various edge conditions. The consideration of
displacements and the use of Hertz’s law of impact at the
point of contact lead to a non-linear integral equation for
the contact force in all cases of transverse impact., Two
methods which are developed in the previous report are then
used to treat this equation: (a) Generalized Galerkin Method;
(b) Collocation Method. Formulas for the maximum contact
force and contact time are obtained which apply to all elastic
impact problems. With the aid of various curves given in
this report calculation can be shortened to a minimum. Im-

pacts on circular and rectangular plates are studied in

detail.
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1. Introduction

To determine the deflection and stresses in a beam or a
plate struck transversely by an elastic body one must know
the local compression - contact force relationship and the
flexural deflection under an unknown concentrated time de-
pendent contact force, A solution for the first is to use
the Hertz law of impact [2], [3], and [4], which is known
to have a wide range of applicability [5]. The flexural
deflections, on the other hand, can be determined by using
the classical theory of vibrations of beams and plates. Con-
sideration of the displacement at the point of contact then
leads to a non-linear integral equation for the contact force.
Various authors studied the problem of central impact of a
sphere on a simply supported beam previously, A discussion
of various methods given by these authors is presented in
[17.

The impact problems involving beams with different
types of support conditions and plates with different shapes
and non-central impact problems are as yet untouched, except
for the paper by K. Karas [6]. He treats the problem of
central impact on simply supported, rectangular plates using
the method given by Lennertz and the step-by-step integration
method used by Timoshenko for the beam problem., A criticism
of these methods may be found in [1] also, Briefly, the
method introduced by Lennertz oversimplifies the problem

-2-



leading to large discrepancies between the correct and approxi-
mate contact forces, while the step-by-step integration method
presents a tedious process and must be carried out for each
individual problem.

In the present report, the problem of non-central impact
on beams and plates having general edge conditions is
formulated in such a way as to unify the transverse impact
problems. Consequently, for the free transverse oscillation
problem leading to normal modes, the integral equation of
impact can be written very shortly. Explicit forms for the
integral equations are given for the following cases:

(a) Beams:

1) Simply supported beams

2) Beams having both ends clamped

3) Cantilever beams
(b) Circular Plates:

1) Simply supported circular plates

2) Circular plates with clamped outer edge.
(¢c) Rectangular Plates:

1) Simply supported at all edges

2) Simply supported at two parallel edges and

clamped at the others.
Two general methods are then used to obtain approximate

solutions of the integral equations of contact force:




(a) Generalized Galerkin Method

(b) Collocation Method.

Discussion of these methods is given in [1].

Explicit formulas are given for the maximum contact force
and for the contact time for various different types of shape
functions, Plots are made for various functions to facilitate
computation for a given problem. In particular, beams,
circular plates and rectangular plates with simply supported

edges are studied in detail,




2, Formulation of the Problem

A beam or a plate is struck transversely by a mass m
having a spherical surface at the point of contact, and

striking velocity v (Fig. 1).

o ¢

The problem is to determine: the contact force F(t) ,
deflection w(x,y,t) and the flexural stresses.

Deflection and the stresses are functionals of the
contact force F(t) . Consequently, F(t) must be determined
first.

The formulation of this problem can be effected only
under certain assumptions, namely: (a) all assumptions of
the classical theory of plates or beams are applicable;

(b) the Hertz law of impact is valid. The last assumption

states that:

« = k 723 (1) (1)

where a 1is the relative approach of striking bodies and

k is the Hertz constant [1], [2], [3]. The relative
approach is the difference between displacements of the plate
and the striking body measured from the instant of initial
contact (Fig. 1). Hence:

a =W~ W (2)

— — - —r— C e s
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where L is the displacement of the sphere under the action
of the force F(t) and w, 1s the deflection of the plate

at the point of contact. Here L is given by:

t
1
wg = vt - ﬁ"f (t=-%) F(z)dv (3)

The deflection of the beam or the plate is in turn ob-

tained by solving the following differential equation:

2
DAy + g-g—t‘g- = ql(x,y,t) (4)
D = ER3/12(1 - v?) p =02, (5)

Here E is Young’s modulus, h is the thickness, p 1is
the weight density per unit area, g is the acceleration
due to gravity, g 1is the load per unit area. Equation (4)
reduces to beam equation if one takes EI for D and
y = d/dy = O, In this case, p and g must be interpreted
as the weight density and the load per unit length. In the
following analysis beam and plate problems are interpreted
as one, The difference is in the additional dimension vy
and the interpretation of D and p which can be adjusted
easily to the method of solution. The resulting formulas,
however, will be given separately for beams and plates.

The concentrated load F(t) 1is obtained as a limiting

process of a uniformly distributed load g over a small

‘ gémhcix{ .



area e2 having the shape of the plate boundary. In beams,
g 1is distributed uniformly over a range e . Thus, by

letting g-—> o while e—0, the contact force F(t) is

obtained:
F(t) = lim S g 0A (6)
e—>»0 (A)
q=p ©

Hence egquation (4) with g subject to (6) must be solved
under initial and boundary conditions to obtain Wy . Once
this is done, the force F(t) can then be evaluated by
solving the integral equation obtained by combining equations

(1) to (3), namely:

t
238 = vt - RS () RO de - (7)




3. Flexural Deflection

Deflection w of a plate or a beam is uniquely deter-
mined when equation (4) is solved under appropriate initial

and boundary conditions., Initial conditions are:
w(x,y,0) =0 ;(x,y,O) =0 (8)

where the dot represents differentiation with respect to
time. Boundary conditions used in practice have great
variety. These conditions consist of specifying any two

of the following four quantities or their linear combinations
on the boundary:

Given: w , 0w/dn , LI A (9)

Here n represents the external normal.to the boundary curve
and Mn is the bending moment and Vn is the transverse
shear resultant which is represented by the Kirchhoff condition
in the classical plate theory,

In what follows, first a general solution of equation (4)
is found which satisfies initial conditions (8) and some
arbitrary boundary conditions,

Dirac-delta function &(x - x,) is defined by:

o for x = X
O(x - x) = and S S(x-xo)S(y-yo)dA =]
O for x ¢ X, (R)

(10)
-8=




where the double integral in equation (10) is taken over the
whole area A of the plate. After Schwartz’s book [7],
the old argument about the existence of such a function can
be looked upon as a solved problem.

Let the time dependent concentrated load F(t) be
applied to the point with coordinate (xo, yo) « Differential
equation (4) can be written in a convenient form by using

equations (6) and (10):

Da2w + (p/g) w = B(x-x,) B(y-y,) F(t) (11)

The solution of this equation is a linear, homogeneous

functional of F(t). Thus:
t
wix,y,t) = J G(x,y,t-t) F(v) dr (12)
o

Substitution of equation (12) into eguations (11) and (8)

gives:
pa%G + (p/g) G = O (13)
G(x,y,0) =0, (p/g)é(x,y,O) - 8(x-xo) S(y-yo) (14)

The general solution of equation (13) satisfying the first
initial condition given by the first of equations (14) and all

boundary conditions is:

G= 3% a

on 9pn (X.¥) sinc t (mn =1,2,...) (15)
m,n




where a . are arbitrary, and gmn(x,y) are free of arbi-

trary constants and satisfy all boundary conditions and the

differential equation:

2 4. .o 4

- - 2
A5°9nn ~ Pun %mn pa_.“/gD (17)

’ (16) Pon

Functions Opn  2Y€ the eigenfunctions. Quantities are

Pon

the eigenvalues and are determined from a frequency equation
which will be known when the boundary conditions are explicitly
given. arn must now be determined from the second of
equations (14):

mfn (p/glapa g - (x,¥) = d(x-x;) d(y-y ) (18)
When the eigenfunctions are not orthogonal this represents a
difficult problem and there is no universal method of deter-
mining the A ° In many cases it is possible to use the
method used for orthogonal eigenfunctions except that the
series (15) must be employed to sum the resulting series.

In many important practical problems the eigenfunctions are
orthogonal. Consequently, an can be determined simply by
multiplying equation (18) by J,s ¢ integrating over the
total area of the plate and considering the condition of

orthogonality:




«]l]l-

bmn for r=m, n=s5s

O forrtments (19)
Hence:
%nn © ghn(xo'yo) ale bmnc‘mn (20)
Consequently:

wix,y,t) = (g/e) 2, (1/bpdap, (x,,v,) gpp (x,)

t

J (ay ) F(v)sin a  (t-7)ds

(21)
o

The deflection at the point of contact is therefore found to
be:

t
w, = (2/M) £ cmn‘f

(1 ) P(T) si (t-7) dv (22)
an / /a.mn sin a_

- 2
®an © mn (xo'yo) A/2bmn (23)

where A 1is the total area in case of plates and total length

in case of beams, and M is the total mass,

When the free vibration problems of beams or plates are

solved the eigenfunctions Fmn and eigenvalues Pon

(consequently @ ) will be known, Thus, the determination

of bmn from equation (19) and o,
difficulty.,

n from (23) presents no

e e

S UV




A few practical examples for beams and plates are given
below. In all examples given below, the eigenfunctions are

represented by g, ©°f and the frequency equation is

9mn
marked by (F.E.). Symbols n and m represent positive
integers.

a) Beams. Eigenfunctions and eigenvalues of the follow-
ing examples are known [8]. Thus, bn and c, are cal-
culated by using Equations (19) and (23) above, since in all
cases the eigenfunctions are orthogonal. The origin is at
one end of the beam.

1) Simply supported beams

4 4

gn(x) = sin nnx/L , «. = nn'g EI/p lﬁ (F.E.) (24)

n

.2
bn = L/2 v c, = sin nnxo/L

2) Beams having both ends clamped

sinh$p._ (2x-L) sin#p, (2x-L) \
g (x) - . n - n
n sinh#p L singp_L ’
n n
cos p L = sech p L (F.E.) } (25)
Pn L + sinh Pp L an + sin an
bn [‘1 -cosh an * 1-cos pﬂL 1
c. = g 2(x)L/2 b y
n n ‘"o n
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38) Cantilever beams clamped at x = 0

cosh PX - €OS p X sinh PpX - sin PrX

gn(X) * Gosh an + cos an sinh an + sin pﬂL 4

cos p L = - sech p L (F.E.) (26)

cos an = cosh an

b -1 (cosh p,L - cos an).2 (an -

=p
n n sin an + sinh phﬁ
c. =g 2 (x ) L/2b J
n n o n

4) Beams pinned at x = O and clamped at x = L

sinh P, X sin P X )

gn(X) = Sink an ~ BIn an ’

tan p L = tanh p L (F.E.) }(27)
b, =% (sin"? p L - sinh™2 p.L) ,

c. =g %(x.) L/2b J

n gn (o] n

b) Circular Plates., Eigenfunctions and eigenvalues

of the following examples are known [8]. Eguations (19) and
(23) above give bn and Cp. respectively, since in both of
these cases the eigenfunctions are orthogonal. The origin is
taken at the center of the plate. The outer radius is a

Polar coordinates r and © are used,




1) Simply supported circular plate
ghn(r,e) = [J,(pr) + B In(pmr)]sin (n® + v,) ,

(28)
B= - Jn(pma)/In(pma)

where Jn and In are the Bessel functions of the first

kind with real and imaginary arguments.

Inel (pma) Tne1 (pma) - 2py3

+ S (F.E.) (29)
1, (pma) I (pma) 1-v

Here v is the Poisson’s ratio.

- 2 12 l+ v+ 2n _ Ppd, . Pyl Jn*l(pma)
bpn = 2ma” Jg (ppa) [F—=—=1 2(y)v 1=

T o 37 ]
m n (Pya
9 9 (30)
San = an (r,, 60) na®/2b_
2) Circular plate clamped at the outer edge
gmn(r,e) = [Jn(pmr) + B In(pmr)]sin (n® + Yo) v
(31)

B= - Jn(pma)lln(pma)

J (g..a) I (p.a)
ntl m n*l m7
T;—-rp-ma)- + —r-ma)- 0] (F.E.) (32)




L2 02 o2 2
by, = 2ma® J, (pma) ¢ Sun ™ 9pn (ro,eo)I4Jn (pma)

(33)

c) Rectangular Plates. For rectangular plates a gquick

method similar to the one used for beams can be used to

obtain boundary conditions which will produce orthogonal

eigenfunctions.
The following is constructed from Equation (16):

b a 2 2 4 4, P2
'{)‘ JO" (grSA gmn - gmnA grs)dXdy = (pmn - prs ){f gmngrstdy

(34)

Integration by parts of the left side of this equation leads

to:
3 2
b a b ¢g dg_. 8%
4 4 mn rs mn
(b = Pre ) S S 9,.9,..d%dy = S [g -
mn rs ' “mnirs At £ 6;5 gx dxz
(35)
2 3 2 3 .
+ 0795 994n - 0795 g+ 09rs 99pn 9 9rs. X = 3gy
dxz 0x dxs mn ayz Jx ayzax x =0

-
[ ]

and a similar equation for y =0 and b , which may be

obtained by interchanging x with y . The bracket on the

right side of equation (35) is zero for two types of practical
boundaries -- namely, simple support and clamped edge. Con-

sequently, these two types of support conditions in any order




lead to normal modes. Many other conditions can be obtained
by making the bracket on the right side of Equation (35)
zero, with the proper choice of g and its derivatives,

The following two examples are most practical:

1) Rectangular plates simply supported at all edges.

Two perpendicular sides with lengths a and b are taken as

the coordinate axes, origin being at a corner:

- min ANX . AT 2 _gb 4
Ipn (X,¥) = sin == sin -Bz .o %T Ppn (F.E.)

pmn2 - [(mn/a)2 + (nn/b)z] e b= ab/4, »(36)
}
mnx nny s
- O Oy 2 |
Son 2(sin = sin — ) )

2) Rectangular plate simply supported along x = O, a

clamped along y = O, b .

qhn(x,y) = cosh ay - cosfy - B(sinBy - %vsinh ay) )
B = (cosh ab - cosBb)/ (cospfb -~% sinh ab) r37)
a= [p2 + (mn/a)z]i . B = [p2 - (mn/a)z'_lé )

(cosBb - cosh ab)2 + (sinfb - %»sinh ab)

(sinBb + g- sinh ab) = O (F.E.) (38)



2
. {[(1 - Ez ) sinh ab sin Bb - 2 % cosh ab cos Bb]

2 2
(cosh ab + %2- cos ab) + 2 g- (cosh ab + EZ cos Bb)} v
a

mn

2 -
b= ab(l+ 85 + 32 (sinpb - £ sinh ap)”! )

> (39)

- 2
c 9nn (xo,yo) aLb/2bmn )




4, The Integral Equation

In the previous chapter it is shown that in all impact
problems the flexural deflection at the point of contact is
given by Equation (22). The integral equation (7) of impact

can be written in a common non-dimensional form as:

2/3 x |
L(f) » af®/%(x) - x + S K(x-y) f(yldy = 0O (40)
)
- “mn _,
f(x) = TOP(Tox)/mvo , K(x) = x + zuhzn.-;; sinw_ _x ,
pw = m/M , X = t/To ’ a=x%k mzlsvo-l/3 T;SI3
»(41)

where To may be chosen in a suitable manner. There Cnn
and Wy, are given by the solution of the flexure problem,
Another form of Equation (40), which will be used

later, is:

X
aP(x) - x+ S K(x-y) 9/2(y) dy =0 ,
(o]

(42)
P(x) = £2/3(x)

_r:?v-‘"" s e




5. Approximate Solutions by Generalized Galerkin Method

The Generalized Galerkin method is developed in [1].
This method gives an approximate solution for any problem
having an equation:

L(f) = O (43)
Let a function f which depends on the arbitrary independent
infinitely many parameters (al,az,..,) and indevendent
variable x, be chosen such that either dfldai satisfy the
boundary conditions at x = X and x = X9 imposed on
eguation (43) or L(f) = O there. This function f(x, al,az,..a)
obviously will not satisfy eqguation (43). This function
represents a solution of equation (43) if a, are solutions of

the following set of non-linear algebraic equations:

X
2
J‘ L[f(xpalgaZ,nan)] g%- dx = O (i = l,z,uuo) (44)
X
1

When 1 is finite f(x,al,az,,.,,aN) is an approximate
solution.

Various functions of the following type are suitable to
use as f(x,al,az,,..):

(a) £ = a; sin a, x

(b) £ = alsin2 a x

-lg-




-20=-

() £ =2 sind/? a x

2
N-1
(d) £ = iil ay sin 1 agx

Hence equation (44) takes the form:

{F/aN L(£) (dflaai)dx =0 (i =1,2,...,N) (45)
Note that df/dal and df/da, for cases (b) and (c¢) satisfy
the end conditions at x =0 , n/a2 . However, in case (a),
one end condition is violated since df/da2 does not vanish
at x = nla2 , end of the contact, Nevertheless, in all
examples worked out, very good approximations are obtained.
Cases (b) and (c) give better results than case (a). (See
Pigures 18,19, and 20.) In case (d) ay is chosen the same
as a, of case (a) since a, of case (a) is found to be
nearly equal to its exact value.

Explicit forms of Equation (45) are given below for
cases (a), (b), and (d). Computations are carried out for

cases (a), (¢), and (d).
Case (a)

(% + 2 a,) Kl 4+ d,ye 'K12/3 =]

(46)
F-Frd) K +Fad.yKH -1




Elimination of K12/3 between these two equations leads to:

K, = 28/[29 - (103 + 24q,)]

15 - 104 (3 + 8q,) (47)

5/3
Y=aa In =
2 d 28215029 - (100 + 24<:z1)]1’F

Case (b)

- 5 ‘ f 2/3 =
(%- F—n+f—nal)'§1+dyKl 1
(48)

9 ’ 3 2/3
(%‘m*%S)Kl*deKI/ = ]

Similarly, K12/3 can be eliminated from these equations
to obtain equations resembling equations (47).
Case (d)

-1 (oyitl .
i,fﬁ (14 2B, ;) Ki +[1-3 G K+ ey - K,

: (49)
NIRRT L BT U T




where:

ai = Bii + ('l)i % Bi = mzn cmn A(kmn)'

8-31‘481-2

D(N..)
m,n n mn

(o]
nm

y=aa,3m ,  a=all2 Fyarayys) = 1.682s7

81 = z C Dl (.}\omn) ¢ Bi = z cmnBi ('Nmn)

m,n m,n

2)‘2

. 2,-3
on cosmn . * (1 Mon )

Dy(ng) = (L =N
© (1 ng B g )7 sinm

B0 ) = (1 - b /02772

ByyOg) =L = 0 /0217 -0 /%17
(%)'1 sinmh

Ki =a;fay . My =0 fay (1,3 = 1,2,...)

’

>(SO)

il N
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@y .m,,:n Cunh M) o O = m%'n cpnl ) )

A' h"mn) = 2(2/7\'11111)2 - - %"‘mnz)-l B % ( mn)--s

. - 2,2
(1 %kmn ) sinnxmn

2,1

D) = g ? e 30 - p BT - Lea pa - 870

- (51)
* sinnxmn- (ZINmn)z(l - %kmnz) 2 cosnh

4 = (l4/5nl/2) I (716) | T (5/3)

T . 213 .. . o
=f (g'Ki51n iu) sin judu (i,j = 1,2,...,N)

x 213,
(o] 1
(52)

J

For N = 3, ny have the explicit forms given below which are

obtained by using the binomial expansion.

ny = 1.682621 + 0.101974 (3 K,/K;) )
ny = 1.223724 (2 Ky/K;) ) (53)
ng = 0.152067 + 1.265714 (3 K,/K;) )

i




Ai(xmn) ' D(m.mn) . Bi"“mn) , Bij (xmn) , (1 #3),

A’(Nmn) , and D'(kmn) are plotted on Figures 2 to 5. Hence
for any impact problem these curves can be used to sum up
the series involved in the expressions of o, , Bij and & ,
If the contact time n/aN is chosen by an approximate method
as suggested by Zener and Feshbach and E. H., Lee [1] or
simply taken as the Hertz time (as this seems to give a better
approximation) then these series can be computed. One can
then, for example in case (a), use the first of equation (46)
to determine the maximum contact force 'Kl « This, of course,
assumes that the second equation of (46) is satisfied. Since
this will not be the case in practice, this reference contact
time mn/a, may be used on the right sides of equation (46)
to obtain a better ay and &, .

For particular beams and plates this process may be
further shortened by giving curves for 81 . O Bij .
In this report this is done for the following simply supported
plate problems under central impact:

(i) Circular plate, Fig. 6

(ii) Square plate, Fig. 7

(1i1) Rectangular plate, with a/b = 2, Pig. 7

(iv) Rectangular plate with af/b = 4, Fig. 7

Similar curves were given in the previous report for simply
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supported beams under central impact (Fig. £0Q, [1]). For
other types of beam and plate problems this may be done once
and for all, reducing the problem of impact to a routine
one, Further discussion and application of this method to

various problems are given in Chapter 8.




6 Collocation Method

This method consists of satisfying the integral equation
(40) or (42) at various characteristic points. In a contact
force curve the important points are: origin, the point of
maximum, the end of the contact time. The contact force
curve differs slightly from a symmetric shape. Thus, choice
of a symmetric curve is reasonable, Let x, be the un-

known non-dimensional contact time. Also let

£(x) = B%K(x) , X(O) =X(x) =0 , X(x/2) =1

X (54)
S(x) =S K(x-y) X(y)dy
)

where A3

is the unknown maximum aplitude. Eguation (40)
must be satisfied at x = xc/2 « Also df/dx obtained from
Equation (40) must be zero at this point. This leads to two

equations to evaluate A and X, . namely:

3

-1
A® =S (xc/2)

’

(55)
xg/2 = a8 "3 (x 12) + sixg2) 5, Hxys2)

where:

d o
S,x(chZ) = [a‘ S(x) ]x=xc/2

-26=
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Equations (55) are also valid if one uses Equation (42) and

choses:
P(x) = A% (x) , Y(O) =¥(x) =0 , Y(x/2) =1

X
S(x) = Kx-y) Y/2(y) ay (56)
o

Hence, if a shape function x(x) or Y(x) , having the
conditions stated in Equation (54) or (56), is chosen, A

and X, can be calculated from Equation (55).

Three practical shape functions are:
(a) X(x) = sin nx/x, (b) X(x) = sin? nx[x,
(¢) Y(x) = sin nx/x
The results for S and S,x in these cases may be written:

S(xy/2) = (xy/m)?(d) + 2R} ,
S x(xc/2) = (xc/n)(dz + ZuRz) (57)

where:

it o b




Case (a)
L o) o ) )
d, = -1 , do=1 , R ) N i=1,2
1° 7 2 17 on ®onPi Mmn
prOg) = (L =ng D7 b 7t sin guag - 1)
PoNgy) = (1 "A.mnz) 1 cos %m“mn &(58)
T"mn -mmn xc/n J
Case (b)
4 = (% - 4)/16 , d, = n/4 )
pyihgy) = B4 2 - (1= P 7@ o "2 cos gm )]
- - (59)
p2(7“1111\) = Man 1(1 B %'Nnnz) . sin %’t)‘tnn }
Case (c)
\

d = 0.457906 , R, = 0.915310 R, - 0.011300R,

dy = 0.811409 , Ry = 0.913310 Ry, - 0.033901R,

Rl' = same as R, of case (a); Rz' = same as Ry of case (a)

Ry = m?n °anP1 *pnle Ry = nen Smnf2 M) }(60)

oy o) = [1 - 0 /327 (A g,) sin guag, + 1]

pz' o‘mn) =[] - O\.mn/3)2]-1 cos %nlhm J




Quantities pl(xmn), pz(kmn), Py N ) OZI‘Kmn) given by equations

mn” ’

(58) to (60) are plotted as functions of Npn In Figures ;é to 12.
Consequently, for any type of plate problems, series Rl and R2
can be obtaiﬁed by summing the individual terms given by these
figures. In narticular, these series summed for simply-
supoorted circular »lates and simply-supported rectangular plates
with the side ratios a/b =1, 2 and 4. Consequently, for the
latter plates under central innact we can read the values of Rl,
Rz, Rl’ and RZ' from Figures 13 to 17, or from Tables 4, 5 and
6. Hence, in comhutation, we first select a contact time X,
then compute Mo from the last of ecuation (58). Next we read
Ry and R, from these figures. Using equation (57) we

calculate the right side of the second of ecuaticns (55). If
this comes out to be xc/2 which we chose to start with, the

calculation is finished. A3

is then calculated by the first of
equation (55). If it does not we try another xc/2 value.

Usually, two or three trials are sufficient to deter.aine X,
satisfying the second of Equations (55). This method is faster
than the generalized Galerkin method. It is not, hcwever, as
general and consequently, in some extreme cases of imnact problems,
such as multinle imnact, it may not be as satisfactory as the
other method. Jlomnutations are made fér circular and rectangular
plates using forcing function sha»es given by cases (a) and (c).
The results are »nlotted on figures 18 to 20 next to those obtained

-

by the Generalized Galerkin method.

S et 7
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In the case of square nlates, the result of K. Karas [6]
obtained by the reliable stepwise integration method is p»lotted
in Fig. 19. An examination of these curves indicate that the
approximation offered to the impact »nroblems is satisfactory
for all engineering »urvoses. Further examnle calculations are

given in Chapter 8.
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7. Deflection and Flexural Otresses

Deflection w can be calculated from eguation (21) as soon
as F(t) 1is determined by one of the previous methods.

All equations obtained for contact force can be »ut into the

form:
F(t) =L F,sin\, t O€te T
i=1,2,... t . ¢ (61)
t a2 TC
F(t) =0
where Fi and Ni are known or can be deterwmined from the
expressions of the contact force.
Substitution of the Eguation (61) into equation (21)
leads to:
- , 2
wix,y,t) —(2/¥¥tli cpn (90, ¥ alx vy )T (Fi/ N %)
(1 - (a /\.)2]‘1 [(Nn;/a__) sina__t - sinn,t]
mn’ "1 1’ "mn mn i’
For O& t & T, (62)
wix,y,t) =(2/%§§1cmn[g(x,y)/g(xo,yo)][ansinamnt
* Cpp cosa  t], For t 2 T, (63)
where:
‘ 2 2,-1 i A
By = & (Fy/ Ay%) [ = (e /A1 [1-(-1)" cosa T I\ /a )
> (64)
~ = 2 - 2 'l - i .
Coan f (Fy/ Ny )[1 (amn/xi) 1 (-1) (hi/amn) sina T, )

The deflection at the point of contact is obtained by taking

X = X,, ¥ =y, in Equations (62) and (63).
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The flexural stresses Op, O and shear stresses =

y Xz
and Tyz can be determined from:
o. = 6M_/h? T. = 3Q_/2h
x X ' "Xz x
(65)
2
= = 2
Uy SMy/h , Tyz 3Qy/ h
where:
My = -Dlw yx * VW yy). My = =Dlw oo+ v o) )
M.xy = -Myx = -D(l--v)w,xy ? (66) ?
Qx = -D(W,xxx + w,yyx) s Qy = =D (w,xxy + w,yyx) J
Here Mx' My are bending moments, Mxy twisting monment,

Qx and Qy are the transverse shear forces, all »er urnit length.
The flexural stresses contain second and third derivatives of
deflection, consequently, convergence is very slow. As a matter
of fact, Txy and ryz diverge at the point of contact.
This fact is well known in plate theory. Bending stresues
Oy and oy are slowly convergent everywhere. This is, of
course, the case even for the static deflection under a concentrated
load.

As nointed out in the »revious reoort, [1l1, the shane of
the contact force has little influence on the deflection of the
plate. As a matter of fact, if one considers the extreme case
of the Dirac d-function type contact force having the same impulse

as F(t) and nlace it at the half of the contact time interval, i

one finds that the deflection »nroduced this way differs little
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from the actual deflection, Fig. 2. Of course, a shane closer
to the actual shane will give better results., Therefore, the
maximum error in deflection wculd be reached by considering a
d-function tyne of contact force. This fact also indicates that
the deflections cannot be used as a criterion of accuracy for the
shape of F (t). The situation for stresses is, of course,
different.

Deflection at the centers of a simply-su»nyorted sqguare
plate and of a circular »late due to a central impact are
computed, The result is nlotted in Figures 21 and 22. The
result for a d-function tyoe contact force for the case of the
square »slate is also »lotted in Fig. 22. Deflection given by
K. Karas [6], based on the reliable .sten-by-step integration
method which is also drawn in Fig. 22, com»ares very well with

these anproximate solutions.
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8. Illustrative Examples

calculations for the case of central impact on siaply-supoort-
ed beams are given in our onrevious reoort. In the »resent
report, examnles are worked out for the case of central impact on

(i) Simply-su>oorted circular plates

(ii) Simply-suprorted rectangular »lates
having size ratics a/b =1, 2 and 4.

Both the Generalized Galerkin method as well as the
Collocation method are used to determine the contact force
and contact time. In all oroblems the striking body is assumed
to be a sohere. This, of course, is immaterial as far as the
theory is concerned, since all we need is to require that
the striking body should have a known radius of curvature at
the »oint of contact, in accordance with the Hertz theory of
impact. OUnce this radius of curvature is known, the Hertaz
coefficient k can be determined [4]. For a sphere striking
a olate the equation for k 1is »articularly simple and is given

by:

k = 1.230520 (£%r)71/® (67)
where £ is the comumon moduli of elasticity of sphere and »slate
Iy is the radius of the s»ohere. In all the calculations,

the following guantities are taken the same:

E=2.2x 10% kg/emn® |, v = 0.3
r, = 1.00 ¢m Y h=0.8 cm
v, = 1CC cm/sec , Y = G.C0796 kg/cm®

where v 1is the common Poissorfs ratio of both »nlates and
spheres, h 1is the plate thickness and y is the common

weight density of the »late and the sphere. Hence .k, for
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the examnles of this rewort, is given by:

k = 0.727456 x 10”4 cm/kg?/®

(i) Circular Plate simply-supported at the outer edge:

Radius of the plate = a = 1Ocm.

Values of P2 which are the rpots of the frequency
equation (2¢) are tabulated in Table 1. a  and ¢ are
calculated from equations (17) and (30) where for the case

of central imvact in exoression (28) of Ion (r,8) we must take

n = 0 and Yo = n/2. Hence for this case we have:

_ 1 1 ) 1 _1l+v _ o Pn% 02
w " Tl el TS 2 )
+ zpma Jl(pma) -1 } (68)

1-v Jo(pma)

n J

Values of c, are giver. in Table 1 for v = 0.3.

(gD/p)l/2 p

a
m

In what follows the contact force and the contact time
are given in units of kilograms and seconds.

(a) Tyoical Zalculation for Generalized Galerkin Method

We use shape (a), that is, we assume that £(x) = alsinazx
1lst apporoximation: Take p = O, then equation (47)

gives:
Kl = (0,965517 , vy = 0.314688

2nd ap»oroximation:

T "L a, = (m y/a)sl5

o | ay - 4.64944 x 10%, hence
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@) = 5.35  , 3 = -46.8
Hence, eguation (47) gives:

= -l = 4 = O
Kl 0.837186, To a, 4.6127 x 10°, ch C.0674

y = 0.310553
Continue in this way until the difference between two subsequent
values of y or Kl or both are small enough. Even above,
the second approximation gives a very satisfactory result.

The values of the contact force and time are given by:

F(t) = Fysin At , F, = 131.509 kg

A = 4.6127 x 10%sec™? ., T_ = 0.681 x 10" *sec.

1

where Tc is the contact time. The result is »nlotted on
Fig. 18,
(b) Generalized Galerkin Method having shav»e (d)

F(t) = z F, sin\t, shane (d).
j=1,2,3 3

Three equations given by equation (42) when solved give:
Fl = 133,427 kg , F2 =1.506 kg , F3 = -11,981 kg

= = -4
Fmax = 145.408 kg , Tc = 0.679 x 10 ° sec

In this calculation,\ of the foregoing calculation is used.
The result is plotted in Fig. 18.

(c) Typical Calculation for the Jollocation Method

We use shape (c),.that is:

F(t) = &S sin 3/2nt/Tc

Equation (55), upon substitution of equation (56), gives:
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3 _
A - ‘anO/Tc (dz + mRz)
s Knv "ln? (4, + R, (69)
T." =1 T AP
[gdy -3 d *ulRy - /N1

lst approximation: Take p = O, then Equation (69) gives:

3 4

A° = 176.863 kg , T, = 0.684964 x 10 *sec.

2nd anoroximation: Calculate

Mo = a)oT/m = C.067815 ——3p Fig. 13 —pR; = 6.86,
R, = 8.42

Substitute in equation (69) to obtain:

3

A° = 146,457 kg , T_ = C.648566 x 1074 sec.

Continue this way until the difference between two subsequent

A3 or/and two subsequent Tc is sufficizntly small to be

negligible. In the »>resent calculation the fourth step gives
the following values:

A3

TC

The result is plotted in Fig. 18. It comnares very well

146.763 kg
0.645 x 10™% sec.

with the result based on the calculation (c) above.

(i1) Rectangular Platds simply-supported at the outer edges:

The length, a, of all nlates in x-direction is taken
constant, a = 20 cm. The calculations are then made for:
a/b =1 , a/b =2 and a/b =4.

where b is the length of the other edge. Circular frequency

g



a are given by equation (36) that is:

mn

mn

a = alo(m2 + n a2/b2) . %o " (gD/p)

1/2
n2/a2

For the present problem, A = 0.622068 x 104sec. Cal-

culations are carried out using both methods with the results

given below:

Square plate a/b =1

F=F) sinnt (shape a) \

Fi= 131.782 kg

N = 4,636 x 10% 1/sec X
- -4

Tc 0.678 x 10 “sec J

F, = 132,308 kg
A = 4.871 x 10% 1/sec

Tc = 0,645 x 10-4 sec

3/2

F = Flsin At

Fl = 146.763 kg

N = 4,875 1/sec

Tc = 0,644 x 10-4sec

(Generalized Galerkin)

(Collocation (a) )

(Collocation (c) )

—" e
£ - N N
—



The results are plotted in Fig. 19 next to the results of

K. Karas [6], based on the reliable step-by-step integration
method., The results compare very well with those of K. Karas,
Shape (c) of the Collocation method can not be distinguished

from the Karas result,

Rectangular plate with a/b = 2

F = Plsinxt

F, = 130.72 kg

4 (Generalized Galerkin)
4,693 x 10° 1/sec

>
"

0.669 x 10 %sec

=3
n

a7 ]
—
U]

132.680 kg

4,829 x 104 1/sec (Collocation (a) )

&
]

0.650 x 10 4sec

-3
"

F = Plsin3/2kt \

Fl = 145,967 kg

4 $ (Collocation (c) )
N = 4,844 x 10° 1l/sec

- -4
Tc 0.649 x 10 “sec J

See also Fig. 0.
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Rectangular plate with a/b = 4.

Only the functions R, , Ry, Rl' . Rz' , B and O are
plotted. See Figures 7, and 14 to 17. No calculation is made

for the contact force.

Circular plate clamped at the outer edge:

Table 2 gives a list of guantities Ppd and Cp the
first of which is the root of frequency equation (32) and the
second is given by the second of equations (33). The procedure
for the calculation of the contact force is identical to those

given above. No calculation has been carried out,

Deflection

The maximum deflection is computed for the circular plate
and sgquare plate as a function of time and plotted in Figs. 21
and 22, In these computations, the expressions used for the
contact force are those obtained by the Generalized Galerkin
method, for the circular plate and collocation (c) for the

square plate; namely:

F(t) = 133.42735 sin (4.627699 x 104t) + 1.505767

sin (9.255398 x 10%t) - 11.980813 sin (13.883097 x

10%)  (Circular Plate)
F(t) = 146.763 sin>/2 4.875287 x 10% ¥ 134.334
sin (4.875287 x 10%) - 14.926 sin (14.625861

x 1O4t) kg (Square plate)

%Lﬁa‘“ -
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Deflection obtained by use of a Dirac 8-function type of contact

force, having the same impulse as the contact force, placed at

the mid-point of the contact interval is also calculated. That

is F(t) = Fy d(t - Tc/2) with F; -‘ch F(t)dt is used in place

of F (t). The result for the deflection is also plotted in Fig. 22,
Comparison is in favor of all the above shapes. The error

comnitted even in the extreme case, where the d-function is

used, seems to be small.
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Table 1
Pyds Cp ~ Simply supported circular plates, (equation 29)

W O 3 O U B W N B

ol L ot A Y S R S B
O O 3 O » W W N = O

c

m

2.2042 1.7397

5.4451 4,3309

8.6061 6.7909
11,7578 9.2557
14,9022 11.727C
18,0438 14,2004
21.2120 16.6556
24.3536 1€.1249
27.4916 21,5844
30.6332 24.030%
33.7748 26.5164
36.9164 28.2909
40.057¢ 31.4606
43,1995 33.9271
46.3411 36.3924
490.4827 38.8631
52.6243 41,3186
55.7659 43,7099
58.9075 46,2670

W s ot s s 4 om0 e oL




W O NN o L o W Nd O~ B

[ o I S R S S T e o Y Y
O © O 3 O v » w N = 0O

P, ©

m

o
0

3.1962

6.3064

9.4400
12,5771
15,7164
18.8565
21.9960
25,1376
28,2811
31,42C0
34.5613
37.7022
40,8438
43,9851
47.1266
50.2682
53.4097
56.5513
99.6929

=43~

Table 2

- Clamped circular plates, (equation 32)

‘n

0
2.7348
4,9073
7.3957
9.8695

12.3374
14.8C25
17.3082
19.7519
22,1122
24.6767
27.1385
29.7442
32.0801
34,5495
37.0096
39,4633
41.9252
44,3813
46.8340
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Table 3

Functions Rl, R2 for the Collocation Method, central

impact on simply supported circular nlates, (eguations58-60)

Mo

.040
.080
.121
.160
. 200
. 240
. 300

R R

1 2
24.1985 20,3397
12.0880 10.3370

7.9639 6.8764
5.9109 5.1983
4.8442 4.1920
3.9143 3.4747
3.1871 2.7443

Table 4

Functions Rl' R2, Ri, Ré for the Collocation Method, central

imdact on

Mo

simoly supported square olates, a/b=1l, (equations58-60)

Ry Ry Ry R
6.4559 7.8811 7.3765 7.7704
4.3901 5.2337 5.0066 5.1442

--- --- --- 3.9988
3.3022 3.8910 3.7524 3,8175
2.6825 3.2444 3.0595 3.2532
2.2370 2.5896 2.5528 2.5076
1.7628 1.9699 1.9959 1.8594
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Table 5
Functions Rl' Rz,'Ri, Ré for the Collocation Method, central
impact on simply supported rectangular »lates, a/b=2, (equations

58-60)

Mo Ry Ry Ry R2

.06 4.3758 5.2139 5.0107 5.0937
.08 3.2067 3.7808 3.6464 3.6454
.12 2.1855 2.7429 2.4989 2.8142
.15 1.8068 2.3249 2.0810 2.4037
.18 1.5607 2.0117 1.8066 2.0628
.20 1.4267 1.7990 1.65C1 1.8059
.24 1.2051 1.4247 1.3841 1.3580
.30 0.9519 1.0679 1.0770 0.9893

Table 6

Functions Rl, R2' Ri, Ré for the Collocation Method, central
impact on simnly sunnorted rectangular plates,a/b=4,(equations

58-60)

Mo Ry Ry Ry’ Ry?

.06 2.3161 2.9355 2.6751 2.8738

.08 1.7519 1.9833 1.9950 1.8150 |

.10 1.3657 1.3978 1.5080 1.1536 |
.12 1.0435 0.8344 1.1369 0.577¢ |

.14 0.8102 0.5281 0.8584 0.2954

.16 0.6319 0.2723 0.6500 0.0417

.20 0.3326 0.0213 0.3085 -0.1410

.24 0.1620  -0.0011 0.2219 -0.059C t
.32 --- 0.0047 --- 0.0141
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